教案应该考虑到学生的学习节奏和能力水平,保证教学的个性化和差异化,教案要根据学生的学习进度和理解程度进行灵活调整,以确保教学进度的顺利推进,找工作范文网小编今天就为您带来了数学预备课教案8篇,相信一定会对你有所帮助。
数学预备课教案篇1
单元导学
本单元的主要内容有用数对表示具体情境中物体的位置、在方格纸上用数对确定物体的位置。
“位置”属于“图形与几何”领域的内容,是应学段目标“探索一些图形的位置关系,了解确定物体位置的方法”的要求而设计编排的。
学生在前面的学习中已经学会了在具体情境中用第几排第几个描述物体的位置,知道在平面图内可以通过两个条件确定物体的位置。本单元在此基础上,让学生学习用数对表示具体情境中物体的位置或在方格纸上用数对确定位置,进一步提升学生的已有经验,培养学生的空间观念,为第三学段学习“图形与坐标”的内容打下基础。
备内容
位置位置(1课时)用数对表示具体情境中物体位置的方法;在方格纸上用数对确定物体位置的方法
备目标
知识与技能
过程与方法
情感态度与价值观
1.明确行与列的意义,理解数对的意义,掌握数对的书写格式。
2.结合具体情境,能用数对表示物体的位置。
3.能在方格纸上用数对确定物体的位置。
1.经历由具体的座位图抽象成用列、行表示的平面图的过程,体现了数形结合的思想。
2.经历在方格纸上确定物体位置的过程,体会一一对应的数学思想,提高解决实际问题的能力。
把位置关系的学习与生活情境紧密联系起来,体会生活中处处有数学。
备重难点
重点
1.明确行与列的意义,掌握用数对确定物体位置的方法。
2.能准确地在方格纸上用数对确定物体的位置。
难点
1.正确使用数对确定物体的位置。
2.运用数对知识解决生活中的实际问题。
数学预备课教案篇2
一、教材依据
人教版教材,三年级下册、第六章、第四课时
二、设计思路
指导思想:本节教学设计是面积和周长的比较。是在学生知道如何计算长方形、正方形的面积基础上,去理解周长和面积有什么区别,以便更好地应用到生活当中。
设计理念:让学生通过练习、例题去自觉发现面积和周长的区别
教材分析:基于面积和周长的所学知识,从而比较面积周长不同。
学情分析:全班21名学生,其中16名学生基本掌握长方形、正方形的面积和周长的计算,另外5名学生中,3人掌握面积如何计算,2人掌握周长如何计算。
三、教学目标
(一)通过比较,学生正确理解面积和周长的意义,能运用概念正确地计算面积和周长.
(二)提高学生综合、概括的能力.
(三)培养学生良好的学习习惯.
四、教学重点:区别面积和周长的意义、计量单位和计算方法.
五、教学难点:正确地进行长方形、正方形周长和面积的计算.
六、教学准备
老师准备一个边长10cm的正方形,直尺,粉笔;学生每人准备一条手帕。
七、教学过程
(一)复习准备
师:我们已学习过了长方形、正方形的周长和面积的计算,下面我们一起来复习一下.
1.怎样计算长方形、正方形的周长?
长方形的周长=(长+宽)×2
正方形的周长=边长×4
2.怎样计算长方形、正方形的面积?
长方形的面积=长×宽
正方形的面积=边长×边长
那么,周长和面积有什么不同吗?今天我们一起来探讨这个问题.
(板书课题:面积和周长的比较)
(二)学习新课
出示图形,这是一个长方形,长4厘米,宽3厘米.请同学提出问题,可以求什么?
(周长、面积各是多少?)
师:请同学在自己作业本上,分别求出这个长方形的周长和面积.老师板书
周长: 面积:
(4+3)×2=14(厘米) 4×3=12(平方厘米)
答:周长是14厘米. 答:面积是12平方厘米.
通过计算你能发现周长与面积有什么不同吗?请根据下面几个问题进行思考.
思考题:
1.周长和面积各指的是什么? 2.周长和面积的计算方法各是什么?
3.周长和面积各用什么计量单位?在个人思考的基础上,再进行小组讨论.
集体讨论归纳:
1.长方形周长是指长方形四条边的长度和,而它的面积是指四条边围成的面的大小.
2.长方形的周长=(长+宽)×2 长方形的面积=长×宽
3.求周长计算出的结果要用长度单位,求面积计算出的结果要用面积单位.
师:同学们讲得很好,那么我们能不能简单地概括出面积和周长究竟有哪几点不同呢?(在老师的引导下,共同归纳、概括)
板书:面积和周长的区别:
1.概念不同; 2.计算方法不同; 3.计量单位不同.
师:现在老师有一个问题,要向同学们请教,愿意帮忙吗?如果计算正方形的周长和面积,是不是也存在这3点不同呢?(正方形的周长和面积也具备这3点不同)
师:老师还有一个问题,假如一个正方形它的边长是4,会求它的周长和面积吗?(学生叙述列式过程,老师写在黑板上)
周长: 面积:
4×4 4×4
师:这两个算式都是“4×4”,这不是完全相同吗?你们怎么能说它们不同呢?(讨论一下,然后再回答)待学生充分发表意见后,老师再归纳.
师:周长的4×4是4个边长,式子中的第一个4是4厘米.面积的4×4是4个4平方厘米,所以两个算式虽然都是4×4,但表示的意义不同.说明面积和周长是两个不同的概念,因此做题时要特别注意区分,要认真审题.
(三)巩固反馈
1.请你用手指出桌面的周长,摸一摸桌面的面积.
2.出示正方形手帕,请同学指出它的周长和面积.
3.计算下面每个图形的周长和面积.
黑板出示:
周长:(12+3)×2 周长:6×4 =24(厘米)
=15×2
=30(厘米)
答:周长是30厘米. 答:周长是24厘米.
面积:
12×3=36(平方厘米) 6×6 =36(平方厘米)
答:面积是36平方厘米. 答:面积是36平方厘米.
4.选择正确答案的字母填在( )里.
(1)一个正方形花坛,边长20米.如果在花坛的四周围上栏杆,栏杆长多少?( )
(2)一个正方形花坛,边长20米.如果李欣每天早晨围着花坛跑5圈,他每天早晨要跑多少米?( )
(3)一个正方形花坛,边长20米.如果在这个花坛里种草坪,这个草坪的面积是多少? ( )
a.20×20=400(米)
b. 20×4=80(米)
c.20×20=400(平方米)
d.20×4×5=400(米)
5.计算下面两个图形的周长和面积.
用直尺画出下列两图形
单位:厘米
(由学生口答,老师写在黑板上)
周长: 面积:
(8+5)×2=26(厘米) 8×5 =40(平方厘米)
5×4=20(厘米) 5×5=25(平方厘米)
黑板演示,把上面两个图形,合并成下图.
计算这个组合图形的周长和面积.
周长:(8+5+5)×2 面积:(8+5)×5
=18×2 =13×5
=36(厘米) =65(厘米)
比较一下,组合后图形的周长、面积,与组合前两个图形周长之和、面积之和有什么相同?有什么不同? (面积相同,周长不同)能说说为什么周长不同吗?组合图形的周长指的是哪部分?师生共同总结:通过这节课的学习,我们认识到面积和周长有三点不同:
1.概念不同;2.计算方法不同;3.计量单位不同.
作业:p.80第6、7、8题.
板书设计
数学预备课教案篇3
【教学内容】:
【教学目标】
一、基础性目标
1.使学生掌握用一位数乘两位数(积在100以内)或几百几十的数的口算方法。
2.使学生能根据两位数乘两位数的笔算方法,推出并掌握三位数乘两位数的笔算方法。
3.使学生知道速度的表示法,经历从实际问题中抽象出时间、速度和路程之间的关系,并应用这种关系解决问题的过程。
4.使学生掌握乘法的估算方法。在解决具体问题的过程中,能应用合适的方法进行估算,养成估算的习惯。
二、发展性目标
1、注重学生的自主探索,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
2、在学习估算过程中,重视培养学生应用数学的意识。
3、在学生自主探索的过程中增强与同伴合作交流的意识,培养学生良好的学习习惯,培养良好的启蒙教育。
【重、难点】
重点:笔算的方法(尤其因数中间或末尾有0的情况),路程问题的解决方法。
难点:积的变化规律,解决路程问题,估算。
【教材分析】
关于整数乘法运算的学习,本学期已进入了尾声。即本单元的学习内容是义务教育阶段整数乘法的最后一个知识块。它是在学生掌握了两位数乘两位数的计算方法的基础上进行教学的。本单元主要内容有:口算乘法,笔算乘法,常见数量关系──速度、时间和路程之间的关系,以及乘法的估算。这些内容的结构如下:
本单元主题图提供了六种不同交通工具的行驶速度,为后面的例题提供素材,同样也引出了速度、时间、路程的问题。在这儿第一次出现速度“千米/时”的表示法。学生在学会三位数乘两位数的笔算方法的基础上,还要会解决路程问题。这样与我们的实际生活也联系了起来。所以我们认为解决问题与笔算乘法是本单元的重点。其中路程问题的需要学生动脑思考,寻找题目当中的已知条件和要解决的问题,结合路程公式来解决问题,还要正确写出速度单位。这是本单元的第一个难点。
积的变化规律:通过两组算式,猜想规律,再让学生举例说明,采用的是归纳――结论――演绎的思路。学生在解决一组乘法算式时,第一时间想到的是计算,而不去观察这几个题之间存在的联系和区别。学生懒得去动脑寻找它们之间的变化规律,所以积的变化规律成了本单元的第二个难点,而我们天天练习的三位数乘两位数却构不成学生的难点。教材提供了两种估算方法。让学生根据实际判断哪种方法更好一些。
估算:要求根据题目意义正确合理的估算。但是我们在做练习的过程当中,只是单纯的估算,而没有情景的限制,加上学生受“四舍五入”的影响,学生很难把握估算的正确合理性。所以我们认为估算是本单元的难点。
数学预备课教案篇4
教学目标:
1.进一步巩固画图整理信息的方法,能借助所画的线段图和示意图分析数量关系,确定解决问题的思路。
2.进一步体会用画图的策略整理信息的价值,懂得画图整理信息是解决问题的一种常用策略,培养运用这一策略分析问题和解决问题的意识。
3.进一步积累解决问题的经验,强化解决问题的策略意识,获得解决问题的成功体验,增强学好数学的自信心。
教学难点:让学生体会用画图的策略解决问题的价值,逐步形成解决问题的策略。
教学准备:
教学过程:
一、知识再现
1.提出问题:
(1)同学们,上节课我们又掌握了一种解决问题的策略,它是什么呢?
(2)我们通过画什么样的图来分析问题?
(3)运用画图的策略来解决问题有什么好处呢?
2.今天这节课,我们要一起完成一些练习,通过这些练习同学们将再次感受画图这一策略的价值。(板书课题)
二、基本练习
画线段图解决问题。
1.完成教材第52页“练习八”第4题。
让学生独立画出线段图。
2.完成教材第53页“练习八”第10题。
让学生根据题目中的信息将教材上的线段图补充完整。
这里比较困难的是弄清楚线段图中,王晓星比张宁多出的那一段表示的是不是8张。
教师可以进行启发:如果多出的这一段是8张,那王晓星就要把这一段都给张宁;这一段都给张宁后,两条线段会一样长吗?
引导学生发现:只能把王晓星比张宁多出的那一段的一半给张宁,这样两条线段才会一样长。因此多出的那一段要平均分成两份,其中的一份才是8张。
让学生独立解答,组织汇报。
3.完成教材第54页“练习八”第11题。
组织练习时,先让学生独立思考,再交流补充线段图的方法,最后让学生独立解答。
三、综合练习
用画示意图的策略解决问题。
1.完成教材第53页“练习八”第8题。
这道题画示意图时,引导学生可以用一个小圆点表示一个人,画出下面这样的示意图:
然后组织学生进行观察,计算出每个方阵需要两种颜色的运动服各多少套,再算出一共要准备多少套。
2.完成教材第54页“练习八”第13题。
让学生在图上画一画,将长方形扩大成正方形。
3.完成教材第52~54页“练习八”其余习题。
学生独立完成。
四、反思总结通过本课的学习,你有什么收获?还有哪些疑问?
五、课堂作业《补》
数学预备课教案篇5
教学目标:
1.通过教学活动,认识有些数据改写单位的必要性。
2.掌握数据改写的方法。
3.引导学生关注较大数据的实际意义。
教学重点:
体会某些数据改写单位的必要性,能用万、亿为单位表示大数。
教学准备:
在报刊杂志等媒体中收集一组有关国土面积、西部情况、海洋资源的大数的信息。
教学过程:
一、体会数据改写的必要性
教师出示从媒体收集来的一组数据改写的实例。让学生比较同样的数据为什么要用不同的方法表示,让学生体会到数据改写的必要性。
二、探索改写方法
1.出示中国地图,了解一些省、市、自治区的土地面积。
让学生读出这些面积,问:如果要记录方便,这些数据可以怎样进行改写?
2.学生先独立思考,再小组交流改写的方法。
3.完成试一试第1、2题:进一步巩固改写的方法。
三、巩固与应用
练一练第1题:先请学生说一说我国西部各省、市、自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的'基础上再请学生改写成以“万”为单位的数。
练一练第2题:先让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。
四、作业
收集有关森林面积方面的数据。
板书设计:
大数的改写:为了读数、写数方便,有时需要把整万、整亿数写成以“万”或“亿”为单位的数。
9600000 = 960万
10000000000 = 100亿
数学预备课教案篇6
一、教材内容简析:
本册教材内容分为“圆柱和圆锥”、“正比例和反比例”和“总复习”三部分。“总复习”包括4个单元。
(一)圆柱和圆锥:包括“面的旋转”“圆柱的表面积”“圆柱的体积”“圆锥的体积”4个课题。
(二)正比例和反比例:包括“变化的量”“正比例”“画一画”“反比例”“观察与探究”“图形的放缩”“比例尺”7个课题。
(三)总复习 :包括“数与代数”“空间与图形”“统计与概率”“解决问题的策略”。
二、教学目的和要求:
1、使学生认识圆柱和圆锥,掌握它们的特征,认识圆柱的底面、侧面和高,认识圆锥的底面和高,会求圆柱的侧面积和表面积,掌握圆柱圆锥的体积计算方法。
2、使学生理解、掌握正比例、反比例的意义,能正确判断两种量是否成正比例、反比例。学会使用数对确定点的位置,懂得将图形按一定比例进行放大和缩小。理解比例尺的意义,能正确计算平面图的比例尺。提高学生利用已有知识、技能解决问题的能力,培养学生应用数学的意识和周密思考问题的良好习惯。
3、通过对生活中与体育相关问题的解决,使学生学会综合运用包括算式与方程在内的相关知识和技能解决问题,发展抽象思维能力和解决问题的能力,进一步培养学生应用数学的意识。
4、通过对生活中与科技相关问题的解决,使学生扩展数学视野,培养实事求是的科学精神和态度,进一步发展学生的思维能力,提高解决问题的能力和增强应用数学的意识。
5、使学生比较系统地牢固地掌握有关整数和小数、分数和百分数、简易方程、比和比例等基础知识;具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,进一步提高计算能力;会解简易方程;养成检查和验算的习惯。
6、使学生巩固已获得的一些计量单位大小的表象,进一步明确各种计量单位的应用范围,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单换算。
7、使学生牢固地掌握所学的几何形体的特征,进一步掌握一些计算公式的推导过程和相互之间的联系,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单画图、测量等技能,进一步发展学生的空间观念。
8、使学生掌握所学的统计初步知识,能够看懂和绘制简单的统计图表,能对统计数据作简单的分析,并且能够计算求平均数问题。
9、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答所学的应用题和生活中一些简单的实际问题,进一步培养学生的思维能力。
三、教学措施:
1、进一步培养合理、灵活地进行计算的能力;
2、提高学生的分析、比较和综合能力;
3、培养抽象、概括的能力和判断、推理能力,以及迁移类推的能力;
4、培养思维的灵活性和敏捷性。
5、培养综合运用知识解决实际问题的能力。
6、进一步发展学生的空间观念。
7、加强口算练习,学会解答比较简单的整数、分数、小数四则混合运算,逐步提高学生四则计算的能力。
8、能掌握一些常见的数量关系和应用题的解答方法,逐步提高解答应用题的能力。
9、增加动手操作的机会,使学生获得正确的图形表象,正确计算一些几何形体的周长、面积和体积。
10、能掌握单位间的进率,能够正确进行名数的换算。
四、教学课时安排
(一)圆柱和圆锥 13课时
(二)正比例和反比例 14课时
总复习 31课时
数与代数 20课时
空间与图形 8课时
统计与概率 2课时
解决问题的策略 1课时
数学预备课教案篇7
第三单元 测量
第1课时毫米的认识
板书设计: 分米的认识
第5课时吨的认识和换算
教学反思:认识质量单位“吨”,初步建立1吨的质量概念。知道1吨=1000千克,并能进行质量单位的简单换算。 培养学生观察、比较、猜测、推理及解决生活问题的能力和合作意识。
第6课时解决问题
教学内容:教材第33页例9、做一做及练习七第5-8题。
教学目标:
1、使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学重点: 用列表的方法整理各种可能的方案。
教学难点: 分析数量关系。
教学步骤:
一、导入新课
1、完成下列填空
2×( )+3×( )=18
(1)括号里可以填哪些数?其中一个括号的数确定了,是否另一个括号里的数就能确定?
(2)如果前面括号里填3,后面括号里填几?
(3)如果后面括号里填2,前面的括号里填几?
2、导入。
谈话:在日常生活和数学学习中,为了解决实际问题,常常需要运用各种策略。今天这堂课,我们一起运用策略来解决一些问题吧!
二、探究新知。
1、理解题意。
(1)从图中我们获得了哪些信息?
(2)要求的问题是什么?
谈话:求怎样派车恰好把8吨煤运完就是求载质量2吨的车、载质量3吨的车各安排运几次,使得这两辆车运载煤的总质量等于8吨。实际上可以用式子2×( )+3×( )=18表示。要求出满足这个条件的所有情况该怎么办呢?
2、探索方法。
(1)学生在小组内交流,自主探索解决问题的方法。
(2)汇报交流。
师:如果用“载质量2吨”的车子装煤,最多运几次?
生:在不用“载质量3吨”的车子装煤时,次数最多,最多8÷2=4(次),刚好装完。
师:通过这个计算,我们知道“载质量2吨”的车子只可能运0-4次,运4次时符合条件,如果安排这样的车运3次,那么,“载质量3吨的车”应该运几次才能把煤运完呢?
生:“载质量2吨”的车运2次,能运煤2×2=4(吨),剩余4吨需要“载质量3吨”的车运2次才能运完,但是同样的它们的总运量不能恰好等于8吨。
师:如果1次呢?0次呢? 学生独立完成。
(3)列表法解决问题。
师介绍用列表的方法把各种方案列举出来,这样更好的简便、直观。列表如下:
派车方案 载质量2吨 载质量3吨 运煤吨数
1 4次 0次 8吨√
2 3次 1次 9吨
3 2次 2次 10吨
4 1次 2次 8吨√
5 0次 3次 9吨
可以看出方案1和方案4符合条件。
3、回顾与反思。
(1)我们在列举的时候应注意什么?(按照一定的顺序)
(2)如果可能的方案无限多,适合用列举的方案吗?(不适合,在能列举出所有方案的情况下选择用列表法列举)
(3)检验一下方案1和方案4是不是恰好可以运完8吨煤。 学生自我探究。
三、巩固练习
1、完成第33页“做一做”。
(1)由题中我们获得了哪些信息?师明确要求怎么付钱,就是求30元里面有几个5元和几个2元,同时需考虑到5元和2元的张数各自只有6张,即最多只能取6张5元或2元。试问如果没有这个条件,怎么做,加上这个条件后怎么做?这样有什么区别?
(2)学生在小组内讨论,用列表法把各种可能的方案列出来然后选择合适的方案。
(3)汇报交流结果,集体订正。
2、完成“练习七”第7题。
(1)求“每条船都坐满,怎样租船?”就是求什么?(学生自由发言)
(2)求“哪个租船方案最省钱”怎么做?(学生把每一种合理的租船方案分别按照大船10元,小船8元计算价格,然后比较大小。
四、课堂小结
今天我们学习了解决问题的策略,你有哪些收获?在题中的条件和问题比较多的情况下,我们可以用列表的方法来列举出所有可能的方案,然后选择符合条件的解决问题的方案。对于这堂课的学习,你还有什么不明白的地方吗?
板书设计
解决问题
第1、4两种方案正好运完8吨煤。
1、“载重量2吨”:4次 “载重量3吨”:0次
2、“载重量2吨”:1次 “载重量3吨”:2次
教学反思:、使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。
数学预备课教案篇8
[教学内容]
打扫卫生(第4~6页)
[教学目标]
1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。
2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。
3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。
[教学重点]
除数是整数,商是小数的小数除法的计算方法。
[教学难点]
除得的结果有余数,补“0”继续除。
[教学过程]
一、复习导入
课件出示情境主题图:
开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?
引导学生列出算式并独立计算:18.6÷624÷4
计算后说一说整数除法与小数除法的异同。
二、对比中探索,交流中生成
师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?
教师把情境题中的18.6改成18.9,把24改成26.
1、初步尝试,发现问题。
请你尝试计算这两题,你发现了什么?
2、独立思考,尝试解决。
师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6
3、讨论交流,异中求同。
(1)在小组内汇报自己的计算方法。
(2)展示汇报。(可能出现第4页中几种不同的方法)
(3)对比这几种方法:有什么相同的地方?
引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9角里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。
4、应用方法,归纳总结。
竖式计算26÷4
(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。
(2)尝试总结除数是整数的小数除法的计算方法。
三、巩固练习。
1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?
2、错题诊所。
209÷5=41810÷25=41.26÷18=0.7
3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。32÷812÷252.45÷3
4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?
[课堂总结]
本节课你有哪些收获?
[板书设计]
打扫卫生
商的小数点要和被除数的小数点对齐。
除到被除数的末尾有余数时,要在余数后边添“0”继续除。
会计实习心得体会最新模板相关文章: