教案的设计应该充分利用教学资源,提供丰富的教学素材和活动,书写教案可以帮助教师在教学过程中更好地引导和激发学生的学习兴趣和主动性,下面是找工作范文网小编为您分享的四年级数学教案通用5篇,感谢您的参阅。
四年级数学教案篇1
教学目标
知识目标:
用表面积等知识,继续探索多个相同长方体叠放后使其表面积最小的策略。
能力目标:
体验解决问题的基本过程和方法,提高解决问题的能力。
情感目标:
通过解决包装的问题,体验策略的多样化,发展优化思想。
教学重点、难点:
利用表面积等知识,探索多个相同长方体叠放后使其表面积最小的策略。
教学策略:
让学生自己亲自实践,引导学生观察、比较、交流,反思那种包装方案最节约。
教学准备:被包装的实物、实物图。
教学过程:
一、复习
说一说怎样包装多个相同的长方体物体能节约用纸?
二、实践活动
第1题:
(1)要学生明白要解决的问题是什么,再动手操作、画图、计算、空间想象来解决包装4盒磁带的问题。
(2)亮出一盒磁带的长、宽、高,根据这个尺寸选择表面积最小的包装方案
(3)提出小组合作的要求,进行讨论、交流。
(4)根据数据得出结论。
第2题:
先让学生独立完成,再在小组交流,然后进行全班交流。
三、总结交流
根据自己的学习情况说说自己的收获,评价自己在学习中的表现。
板书设计:
包装的学问
(学生班数自己的计算情况)
四年级数学教案篇2
教学目标
1、 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。
2、 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。
教学过程
一、 创设情境,激趣引入
谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。
课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。
提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)
谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)
[评析:通过介绍哥德巴赫猜想的有关史料,很自然地把学生的注意力集中到素数的概念上,激发了学生进一步探索和发现的欲望。同时,学生能从中感受到数学的奇妙与魅力,产生对数学的兴趣。]
二、 设疑引探,自主建构
1. 操作感受。
谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。
学生在小组内活动,教师巡视并指导。
引导:仔细观察拼出的结果,你发现了什么?
通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。
提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)
[评析:数学教学不仅要注重数学知识和技能的传授,更要让学生经历知识的形成过程。实验环节的设计,能引导学生在操作活动中自主发现自然数因数个数的特点,初步感知素数和合数的概念。]
2. 分类建构。
谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。
学生活动,教师巡视。
反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)
提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)
提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)
再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)
谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。
学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。
提问:在2~20各数中,哪些数是素数?哪些数是合数?
[评析:让学生写出1~20各数的所有因数,并根据每个数因数的个数进行分类,为学生的自主探索留出了足够的时间和空间,提高了学生的参与度,突出了学生的主体地位。接着通过对三个问题的讨论,引导学生深入思考,发现素数和合数的特点。自学课本,既及时准确地揭示了素数和合数的概念,又为学生进一步清晰和修正已经形成的概念提供了机会。]
3. 交流质疑。
谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?
学生可能提出:素数有多少个?最小的素数是几?最小的合数是几?有最大的素数或合数吗?
根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。
三、 巩固练习,深化认识
1. 试一试。
出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。
先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。
2. 做想想做做第2题。
先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。
3. 做想想做做第3题。
学生独立完成判断,并说明理由。
四、 全课总结
提问:通过今天的学习,你知道了哪些知识?有什么新的收获?
五、 举例检验
谈话:我们已经认识了素数,再回过头看一看哥德巴赫猜想(出示哥德巴赫猜想),你认为这个猜想正确吗?你能举几个例子检验一下吗?
学生举例检验。
谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!
[评析:利用所学知识解释和检验哥德巴赫猜想,既巩固了本节课学习的内容,又进一步激发了学生的探索愿望。]
[总评]
在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。
在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。
四年级数学教案篇3
(一)教学内容
?温度》是北师大版小学数学四年级上册第七单元>中的第一课。它是学生认识万以内的数、小数、分数以及体会万、亿等大数的实际意义基础上进行教学的。由于每天气温的变化是与日常生活紧密联系的。因此,教材通过天气预报图介绍北京等地的温度,使学生了解零下温度的表示方法,并初步理解负数的意义。教学时,应从学生实际经验出发,引导学生通过观察,自主地进行探究,体验两个相反意义量之间的关系。为了更好地体现学生的主体性,我引导学生完成以下教学目标。
(二)教学目标
知识目标:通过收集信息,让学生在熟悉的生活情境中理解正负数的表示方法。感受引入负数的必要性,并会正确读写,会比较两个零下温度的高低。
思维能力目标:在教学中通过各种数学活动注重培养学生观察比较能力,自主探究能力和合作交流能力。
情感态度与价值观:通过创设各种生活情景,让学生体会数学与生活紧密联系,激发学生积极主动性和兴趣。
(三)教学重点、难点与关键:
1.解天气预报中零下温度的表示方法,并能正确读写。
2.正确比较两个零下温度的高低。
3.让学生经历调查气温活动的过程中,从中积累感性知识,并通过讨论、交流把感性知识升华为理性认识。
1.情景创设,激发兴趣
兴趣是的老师。因此,本节课我创设了各种情景,如看一看、做一做、摸一摸、猜一猜、测一测,激发学生的学习兴趣,引导学生由对“活动的兴趣”发展为“数学的志趣”。
2.联系生活,体验感悟
?数学课程标准》指出:联系生活实际学数学。因此本节课,我采用了“联系生活体验感悟”的教学方法,使学生体会到数学源于生活,还要还原于生活。
二、教学流程
第一环节,交流信息素材,提供资源
新课开始,我是这样导入的,课前老师让同学们对全国一些大城市的气温进行调查,谁愿给大家说一说你调查的方法与调查结果。学生展示收集的信息,并交流调查的方法,教师结合学生的汇报将相关的数据板书在黑板上,如:—2℃、0℃、5℃、15℃、12℃等。请同学观察这些数据,每个数据后面都由一个“℃”它读作摄氏度,用字母℃来表示,是计量温度的单位。如果让你们把这些数据进行分类,你认为分成几类,在学生汇报的基础上,我加以整理并对温度的写法加以规范。
关于温度,你们已经知道了什么?你们还想知道什么?今天我们一起来学习和温度有关的知识,
第二环节操作观察,主动构建
1体会温度表示的意义。
同学们,你们想当天天气预报员吗?今天老师给大家带来了一份天气预报图,请同学们仔细观察,你们都看到了什么?和小组成员交流一下,待会请你当天气预报员给大家解说一下。
在学生汇报的基础上,我提出了两个问题
(1)北京—2~5℃表示什么?
(2)—2℃表示什么?
让学生自主解决,体会温度表示的意义。
2认识温度计
我们认识了这么多的温度,那它是怎样得到的呢?是啊,它们是用温度计测量出来的,让我们一起来认识一下温度计,请同学们仔细观察,把你的发现和疑问说一说。学生在质疑与释疑的过程中认识温度计,知道温度计上有刻度、水银指示柱,并会读写温度计。
?意图:我给学生充分地思考、探讨的时间和空间,充分发挥学生的集体智慧,培养学生自主探究的精神。】
3.用温度计
我们已经认识了温度计,下面我们用自制的温度计把这几个城市的气温和最低气温表示出来。重点引导学生对比零上12℃和零下12℃不一样。这种现象说明了什么?
4.感受温度的高低
请同学们拿出课前准备的一杯热水和一杯冷水,用手分别摸一摸,感受一下水的温度,并猜一猜两杯水的温度各是多少?然后用温度计分别测一测两杯水的温度。
?意图:通过摸一摸、猜一猜、测一测等活动,让学生感受温度的高低,并学会测量温度。】
5.温度大小的比较
机灵狗还给我们带来了拉萨的气温,你能读出来吗?拉萨的气温是零下3℃,最低气温是零下20℃。让学生用刚才学习的方法把它表示出来是—20~—3℃。—20~—3℃哪个温度高,哪个温度低,为什么呢?在学生充分讨论的基础上,我用课件进行演示。接着让学生比较另两个温度的大小。
?意图:通过情景图和温度计,让学生初步学会温度大小的比较,并总结出比较的方法。】
第三环节:实践应用拓展新知
在这个环节,我设计了四个针对性的练习:
1.出示第一题让学生结合温度计读出个城市的气温,并加以比较,通过想一想,使学生将学到的数学知识灵活应用于实际生活。
2.连一连,联系学生的生活实际,体会到同一样物体,所处的环境不同,温度也会发生相应的变化,培养学生思维的灵活性。
3.读一读,通过读一读,使学生知道,温度在我们生活中应用非常广泛。
4.试一试,通过练习,让学生明确要标出个城市的气温,应先确定0℃。
第四环节:总结交流课外延伸
同学们,这节课我们研究了温度中的学问,现在你对温度有什么新的认识?学生总结汇报后,我揭示正数、负数的意义,并提出:关于负数,你还想知道什么?
?意图:“学起于疑,又终于疑。”当学生总结汇报后,我提出关于负数,你还想知道什么?独具匠心的设计让学生带着疑问走出课堂,为后继的学习打下伏笔。】
四年级数学教案篇4
【教学内容】
人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。
【教学目标】
1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。
2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。
3、培养学生探究发现、类推迁移的数学学习能力。
【教学重点】
在学生初步认识分数和小数的基础上,进一步理解小数的意义。
【教学难点】
理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。
【教学准备】
米尺、多媒体课件、立方体教具。
【教学过程】
一、【课前铺垫、创设情景】
教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。
二、【新课讲授】
1、认识一位小数
今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!
(出示米尺课件)学生仔细观察,回答问题。
教学例1。
教师提问:一起来数数,把1米平均分成了多少份?
学生一起数,得出结论(10份)。
提问:因为1米=10分米,所以这一份是多长?
学生观察后回答:1分米
小结:我们把1米平均分成了10份,每一份是1分米。
提问:1分米是1米的几分之几?()
(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)
教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)
想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)
由此得出:米=0.1米
(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)
提问:谁能说说0.3米表示什么意思?
同样,可以得出:米=0.3米
(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)
提问:谁能再来解释一下0.7米表示什么意思?
同理,可以写成:米=0.7米
(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)
教师旨在引导,学生观察发现
师:课件显示我们刚才得到的`一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)
师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)
师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?
学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!
出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)
一起数数0.3米是由几个米组成的?(3个)
提问:那0.3里面有()个0.1?
这一段又是多长?(0.7米)
再来数数几个米组成0.7米?(7个)
提问:那0.7里面有()个0.1?
进一步强化训练:0.9里面有()个0.1?(9个)
请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)
提问:1里面有()个?(10个)
也就是说:1里面有10个0.1
提问:谁能告诉我1.2里面有()个0.1?(12个)
师:你是怎么想的?
教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1
师:这句话太重要了,谁能把它再说一遍!
点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)
反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?
2、认识两位小数
小小的米尺,大大的学问。
师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)
1厘米是1米的几分之几米呢?(米)
出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。
小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)
提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?
请大家翻开课本32面,把你的答案写在书上。
教师根据学生的回答,课件逐一出示答案。
师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)
师:请大家仔细观察,这次写出的都是几位小数?(两位小数)
师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)
师:那你发现了什么?
学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!
师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01
师:谁能把这句非常重要的话像老师这样说一说!
点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)
反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)
3、认识三位小数
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?
学生分组讨论交流,小组选派代表发言。
发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米
提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?
学生总结发现:
分母是1000的分数,可以用三位小数来表示。
三位小数的计数单位是千分之一,写作:0.001
点击出示发现!你们个个都是自学小能手!老师为你们点赞!
4、概括:小数的意义
师:通过刚才的学习,我们知道了:
分母是10的分数,可以用一位小数来表示
分母是100的分数,可以用两位小数来表示
分母是1000的分数,可以用三位小数来表示
谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)
学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)
师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……
这就是小数的意义,请大家齐读一遍。
学生齐读意义,教师板书课题~小数的意义
师:同学们可真棒!自己总结出了小数的意义!
5、总结:小数的计数单位
师:通过刚才的学习,我们也知道了:
一位小数的计数单位是十分之一,写作:0.1
两位小数的计数单位是百分之一,写作:0.01
三位小数的计数单位是千分之一,写作:0.001
师:谁能尝试着把它们用一句话来总结一下?
学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)
师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。
师:这里的省略号表示什么意思?(说不完)看来同学们理解了!
6、小数相邻单位间的进率
(过渡)学习的过程就是不断地克服困难,战胜自我的过程。
师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?
教师出示正方体变形课件,逐步引导学生观察分析:
1里面()个0.1
0.1里面()个0.01
0.01里面有()个0.001
提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。
学生讨论发言。
小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。
师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?
学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)
请大家齐读一遍。
三、【巩固提升、练习反馈】
1.完成教材第33页“做一做”。(可以一题两问)
2.判断:争当合格小裁判(说出判断理由)
四、【课堂小结】
提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?
小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)
五、拓展延伸
板书设计
小数的意义:分母是10、100、1000……的分数,可以用小数来表示。
小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……
小数的进率:每相邻两个计数单位之间的进率是10。
四年级数学教案篇5
教学目标:
1、结合具体情境,探索积的小数位数与乘数的小数位数的关系。
2、让学生在比较中学会观察,学会总结。
3、渗透科学的思维方法。
教学重点:探索积的小数位数与乘数的小数位数的关系。
教学难点:探索积的小数位数与乘数的小数位数的关系。
教学设计
一、创设问题情境:
1、出示一张测量表:这是小强学习测量以后,课外测量的几组数据。你能根据这些数据算出它们的面积吗?
街心广场 长30米宽20米
花 坛长3米宽2米
地板砖 长0.3米宽0.2米
(1)学生独立列式计算后,汇报。
(2)教师根据学生的汇报,板书出3个算式:
街心广场: 30×20=600(平方米)
花坛: 3×2=6(平方米)
地板砖: 0.3×0.2=?
二、探索积的小数位数与乘数的位数之间的关系。
1、讨论:街心广场和花坛面积之间有什么关系?它们的长与宽之间又有什么关系?
总结:长与宽都扩大到原来10倍,面积扩大——100倍;长与宽都缩小到原来10倍,它的面积就缩小到原来的100倍。缩小到原来的100倍也可以说是缩小到原数的1/100,小数点向左移动2位。
2、小组讨论:我们应用刚才发现的现象,来比较花坛和地板砖的面积之间有什么关系?
地板砖与屏幕相比,长和宽都缩小到原来的10倍,它的面积也就缩小到原来的100倍。所以它的积也会缩小到原来的100倍。结果是0.06平方米。
3、这种方法得出来的结果是否正确?你能用其它的方法验证吗?(可以引导学生从直观涂一涂的方法来验证刚材的结论是否正确。)
4、引导学生总结:在小数乘法中,我们可以先把它们看成是整数来算,然后再看乘数的末尾一共有几位小数,就在积的末尾数出几位小数点上小数点。
三、尝试练习,再探规律。
1、试一试:根据第一算式求下面2个算式的积。让学生说说怎样算的。
2、填一填:将上一题的计算结果填入表格中。然后观察积的小数位数与乘数的小数位数之间有什么关系。(小组讨论)
汇报交流:第一个小数的位数与第二个小数位数加起来等于积的小数位数。
根据上面的规律,完成练一练的第1题、第2题。
四、全课小结。
板书设计
积的小数位数与乘数的小数位数的关系
街心广场: 30×20=600(平方米)
花 坛: 3×2=6(平方米)
地 板 砖: 0.3×0.2=0.06(平方米)
会计实习心得体会最新模板相关文章: