教案在书写的时候,我们需要考虑联系实际,为了确保教学工作顺利,少不了要制定一份出色的教案,下面是找工作范文网小编为您分享的苏教版五数学上册教案7篇,感谢您的参阅。
苏教版五数学上册教案篇1
实践要求:
1、经历有目的、有设计、有步骤、有合作的实践活动。
2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
教学内容:
冀教版小学数学六年级上册69——70页。
教学目标:
1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。
2、数学思考:如何对自己设计的理财方案作出合理的解释。
3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。
4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。
教学重点:
学会理财,会对自己设计的理财方案作出合理的解释。
教学难点:
对自己设计的理财方案作出合理的解释。
教学流程:
一、导入
老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。
{设计意图:通过和学生谈话,轻松引入本节课的课题}
二、任务??
设计方案,解决问题
聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)
(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)
(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)
(3)议一议:你认为那种存钱方案?为什么?
{设计意图:学生通过前面的学习,已经具备了计算利息的能力,学生能够根据聪聪家的情况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种成功的喜悦感}
三、小组汇报、展示
{在学生计算的过程中,教师巡视,发现学生有代表性的方案进行展示,重点放在解释哪种方案,即学生能对自己制定的方案进行合理的解释}
四、任务二
聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。
零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。
(1)计算聪聪家每个月的结余。
(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。
(3)按照你的存钱计划,算一下,到期能取回多少钱?
知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。
其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。
五、分享收获
{设计意图:希望学生通过这节课,感受在给定目标下,针对具体问题提出设计思路、制定简单的方案解决问题的过程。}
六、课下作业
为自己的零花钱制定一个零存整取的存钱计划。
{设计意图:作为本节课知识的延续,让学生养成一个合理消费的习惯,做一个生活上有计划的人,合理支配自己的财富}
板书设计:
收入:2160+4180=6340(元)
支出:2500+800+200+160+30=3690(元)
结余:6340—3690=2650(元)
苏教版五数学上册教案篇2
教学内容:
人教版义务教育课标实验教材(四上)112的例1
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
教学重点:
体会优化思想。
教学难点:
探究解决问题的最优方案。
教具准备:
多媒体课件、探究用表格
学具准备:
三张圆纸片。
教学过程:
一、创设情境,生成问题
1、同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?
2、我们来看看王华家厨房里的数学问题。(课件出示例1图)中午放学回家,王华发现妈妈正在厨房准备烙饼。(板书课题:烙饼问题)
师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。
(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)
教师提问:“妈妈烙一张饼最少需要几分钟?” “如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”
二、探索交流,解决问题
1、学生操作,探究烙3张饼的方法。
让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。(圆片的正、反面上分别写着正、反两字来代表饼的正、反面。)教师参与到小组活动中。
(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)
2、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)
让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”
得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。(教师板书快速烙饼法)
教师用课件演示烙三张饼的方法并小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。
师:老师是用什么方法烙的?(也是用快速烙饼法)
师:使用这种方法时,你发现了什么?
(1、使用快速烙饼法,锅里面必须同时放2张饼。2、用的时间短。)
让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。
(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)
3、拓展延伸:
师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”
小组活动,通过小组交流,使学生找到最佳方法。
教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”
(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)
在这样过程逐步形成课件表格.饼数
2 3 4
同时烙两张饼 快速烙饼法 两张两张地烙
先烙两张,后三张用快速5 烙饼法
两张两张地烙
18 15
烙 饼 方 法
最少所需的时间(分)
6 9 12
7 8 9 10
21 24 27 30
4、探究规律。
让学生仔细观察表格、小组讨论交流,说一说自己的发现。
(根据情况决定是否给学生启示:
1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?
2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)
学生在充分交流探讨的基础上,得出结论:
1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。
得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”
(通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)
三、实践应用,内化提高
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流
四、回顾整理,反思提升
1、这节课你学到了什么?
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
苏教版五数学上册教案篇3
教学目标:
1、知道时间可以分钟面时间、经过时间两个方面,从而正确把握有关时间计算的概念。
2、正确计算一天之内的经过时间,解决一些实际问题。
教学过程:
一、认识两种时间概念:
1、我们学习了两种记时法,老师这儿有一句关于时间的话,来看一下:妈妈上午8时,上班一天工作8小时。(板书:8时、8小时)
(1)读一读,问:它们一样吗?有什么不一样的?请你分别说说自己的想法。
(2)教师要在学生说的基础上加以规范:
8时:它表示上午的一个时刻,那时我们正在上课,它还可以写成8:00;
8小时:它指的是一段时间。
出示钟面(画一画)……
指出:8时,是表示的某一时刻,用“时”来说,它是一个钟面时间。(板书:钟面时间—时)
而8小时,是从8:00开始数8个小时,到下午4时下班,这一段时间里经过了8个小时,它不是一个具体的时刻。) (板书:经过时间—小时)
(3)指板书说:时,一般是指钟面上的几时,它表示的是钟面时间;小时,它一般表示的是从某一个时间开始到另一个时间结束,它是一个经过时间。 (用点●和箭头在钟面旁加以区分)
2、判断,仔细听老师说的话,想:这是钟面时间还是经过时间?
老师晚上10时睡觉;老师晚上睡10小时。
3、揭示课题:这节课我们要通过一些钟面时间来简单地算经过时间。
二、教学经过时间的计算
1、出示:老师今天早上7:00上班,一直到中午11时下班,上午要上班几小时?
(1)出示题目:这里的早上7:00、中午11时是什么时间?问题求上午要上班几小时是什么时间?
(2)学生计算。
(3)交流:用什么方法比较好? (实物投影反馈)
板书:11-7=4(小时)
11:00-7:00=4(小时)
讨论:4的单位是时?还是小时?可以写成4:00吗,为什么?
(4)结:像这样简单的计算,我们可以直接用后面的几时减前面的几时。
2、王师傅上午7:30上班,中午11:00吃饭,他上午工作了多少时间?
(1)独立思考
(2)全班交流,说说怎样计算:要求的是什么时间?(经过时间)还能用后面的时间减去前面的时间吗?你是怎么减的?
教师借助0—24小时图帮助学生理解、体会不同方法。
7:30——10:30 3小时,再加30分钟,是3小时30分
7:30——11:30 4小时,再减30分,是3小时30分
教师重点介绍横式书写方法,先减分再减时,分不够减想时借1作60。
11:00(10:60)-7:30=3小时30分
3、练一练:同学们下午1:00开始上课,下午4:25放学,同学们下午在校有多长时间?
三、综合练习
1、想想做做第2题
示图,补充银行营业时间:上午8:30——下午5:00
(1)计算每个商场的营业时间
说说所标内容是什么意思?尝试练习
(2)交流:说说你是怎样计算每个商场的营业时间的?
(3)比较得出结果
师结:用普通记时法表示时,若两个时间都在上午或下午,就可以直接用后面的时间减去前面的时间,若两个时间,一个在上午,一个在下午,就要把下午的时间先化成24时记时法,再用后面的时间减去前面的时间。
四、总结
今天学习了什么内容?要求经过时间只要怎样计算?该注意什么?(单位;下午时间转化成24时记时法;退1作60来计算)
苏教版五数学上册教案篇4
一、教学目标
1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。
2、结合具体情境,进一步体会“整数”与“部分”的关系。
二、重点难点
重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
难点:充分体会“整数”与“部分”的关系。
三、教学过程
(一)复习旧知,导入新课
1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗?说说它们分别表示什么意义?
2、今天我们一起来学习《分数的再认识》。
(二)创设情境,学习新知
活动一:分笔游戏,体会单位??
1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)
2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。
3、另找4名同学检查。
4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)
5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)
6、师总结:最初每位同学笔的“整体”不同,也就是单位“1”不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识?
活动二:教材p34说一说。
1、带着新的认识,我们来判断两个小朋友看的书一样多吗?
2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。
3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)
4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)
5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:“我俩吃的一样多”。李晓阳说:“我吃得比你多。”他们谁说得对呢?
(三)巩固练习
1、教材p34画一画。
2、教材p35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)
四、板书设计
分数的再认识
整体不同,相同分数表示的数量也不同。
整体相同,相同分数表示的数量也相同。
五、教学反思
本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。
苏教版五数学上册教案篇5
教学目的:
1.使学生较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题.
2.培养学生认真仔细的学习习惯,提高学生的计算水平.
重点、难点:
哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1。
教学过程
复习准备,导出新知
基础训练
口算:9+6=5+5=6+8=
8+6+1=8+2+1=6+5+1=
求385与705的和。
全班齐练,教师巡视,做完后集体订正。
你能不能自己写出一道两位数加两位数的加法算式呢?
笔算不进位加法要注意什么呢?
相同数位对齐。
从个位加起。
教师强调:哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1。
学习新课
导入新课出示课题
师:刚才的复习,是前面刚刚学过的进位加法,同学们掌握得很好,今天我们继续学习进位加,但和前面学的稍有不同,今天要学习的是连续进位加。
板书课题:连续进位加
教学例1
学生尝试摆小棒求得98+25的结果(允许有各种方法。)
小组合作讨论喜欢哪种方法,引导研究课本中的方法。
提问:
师:先加哪一部分,单根的8根和5根怎样加?给8根小棒凑几根就是10根?(8+2+3=13)
满了10根可以捆成一捆,捆好举起来让大家看看,放在哪里呢?10个1根捆成1捆,也就是1个十,放在整捆小棒下面。再加整捆小棒,9捆加2捆再加这1捆,一共有12捆小棒零3根。指着图问:这一捆小棒哪里来的?把单根小棒合起来,满了10根就捆成一捆,放在整捆小棒下面。
教师小结:单根合起来满十就可以捆成一捆,放在整捆下面,表示1个十。
列竖式计算。
学生自由书写竖式,再讨论哪一种合理。这道题的竖式怎么写?(个位和个位对齐,十位和十位对齐。)
从哪一位加起呢?(从个位加起。)
那么竖式中个位相加的得数怎样写呢?
想一想:小棒应该怎样摆?
独立完成计算。(两个学生板演,其余同学在书上完成。)
讲评:同桌口述并检查,在进位时1写的位置对不对,做进位加法时,是否漏写1或忘加1。
做一做
1、直接在书本上计算,指明学生板演,集体讲评
2、求出每一个胡萝卜上的算式的得数。
3、练习四,第一题,连一连
4、地球仪85元,书包48元,买一个地球仪和一个书包一共要多少钱?你还能提出什么问题?
苏教版五数学上册教案篇6
教学要求:
1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点:小数乘法的计算法则。
教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教学用具:投影、口算小黑板。
教学过程:
一、引入尝试
1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书: 0.8 ×1.2)
2、尝试计算
师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?
师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?
如果能,应该怎样做?(指名口答,板书学生的讨论结果。)
示范:
1. 2 扩大到它的10倍 1 2
× 0. 8 扩大到它的10 倍 × 8
0.9 6 缩小到它的1/100 9 6
3、1.2×0.8,刚才是怎样进行计算的?
引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。) 想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。
师:请做下面一组练习
(1)练习(先口答下列各式积的小数位数,再计算)
(2) 引导学生观察思考。
①你是怎样算的?(先整数法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)
③ 计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)
通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3) 根据学生的回答,逐步抽象概括出p.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
(4)专项练习
①判断,把不对的改正过来。
0.0 2 4 0.0 1 3
× 0.1 4 × 0.0 2 6
9 6 7 8
2 4 2 6
0.3 3 6 0.0 0 0 3 3 8
②根据1056×27=28512,写出下面各题的积。
105.6×2.7= 10.56×0.27= 0.1056×27= 1.056×0.27=
三、应用
1、在下面各式的积中点上小数点。
0 . 5 8 6 . 2 5 2 . 0 4
× 4. 2 × 0 . 1 8 × 2 8
1 1 6 5 0 0 0 1 6 3 2
2 3 2 6 2 5 4 0 8
2 4 3 6 1 1 2 5 0 5 7 1 2
2、做一做:先判断积里应该有几位小数,再计算。
67×0.3 2.14×6.2
3、p.8页5题。
先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
四、体验
回忆这节课学习了什么知识?
五、作业 :p8 7、9题。p9 13题。
苏教版五数学上册教案篇7
教学目标:
1.通过对实际问题的调查统计,使学生经历收集、整理、分析数据的整个过程,体会统计的意义。
2.使学生初步学会简单地收集和整理数据,会填写简单的统计表,会画简单的统计图,能对统计结果进行简单的分析。
3.培养学生分析和解决一些实际问题的能力,感悟“数学来源于生活,服务于生活”的道理。
教学重点:
收集和整理数据,会填写简单的统计表,会画简单的条形统计图。
教学难点:
能根据统计表、统计图,提取数学信息,提出数学问题,根据统计结果做出决策。
教学准备:
课件
教学过程:
一、谈话引入 提出问题
师:同学们,你们听说过“统计”这个词吗?板书:统计对于“统计”,你想知道什么?
(什么叫统计?可以怎样统计?学统计有什么用?„„)
过渡:同学们提出了很有价值的问题,这节课就让我们一起学习、认识“统计”。
二、探究问题
(一)认识统计表
1.出示课件,提取数学信息。 有四种饮料,桃汁5箱;梨汁10箱;苹果汁9箱;桔汁5箱。
2.学生把饮料的箱数填在练习纸上的统计表中。
3.汇报:你是怎样填的?
理解“合计”的意思。
4.对比饮料图与统计表
师:如果让你用很短的时间发现更多的数学信息,你看下面图(杂乱的),还是看上面的统计表?为什么?(每种饮料的箱数一目了然)
师:像这样的表,叫统计表。
板书:统计表
正因为统计表有这个优点,所以许多地方都用到它,你在哪见过统计表?
5.看统计表提取数学信息。
(二)认识统计图
1.课件:出示饮料图
2.生提出摆放建议
追问:分类摆放有什么好处?(便于拿取;箱数一目了然)
3.课件出示分类摆放的饮料图
师:工人叔叔摆放饮料的办法真好,我们可以照着这种方法画一张统计图。
板书:统计图
4.认识统计图
课件演示:方格纸→左侧数字→下面饮料名称
师:你打算怎样表示桃汁的箱数?
生自由发??
数学上用竖着的条形表示。(板书:条形)
5.画统计图
生拿出自己喜欢的彩笔,用【.1mi.net】条形表示其余饮料的数量。
6.看统计图,提取信息,提出数学问题
(三)学看统计图
1.课件出示两天后超市现有饮料统计图,看统计图回答问题。
2.根据统计图做出决策
师:看这张统计图,如果你是店长,你会做出什么决定?
(四)小结
三、实际应用
1.数学书上128页试一试
2.四届奥运金牌榜
填统计表,画统计图,回答问题
师:看这张统计图,你发现了什么?(金牌数增多。)
预测一下,2008年在北京举办的29届奥运会的金牌数。
四、拓展质疑
1.这节课上到这儿,你有什么收获?还有什么问题?
2.教师总结:我们今天只是初步学习了统计图和统计表,今后我们对统计还要进行深入地学习。
五、布置作业
选自己感兴趣的内容,自己找数据,制统计表,画条形统计图
教学内容:
长方体和正方体的认识
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:
教师准备多媒体课件、一个稍大的纸盒及一个有相对的两个面是正方体的纸盒、学生每人准备一个长方体小纸盒、每个小小组准备一个正方体
教学过程:
一、引入新课
1、由平面图形引到立体图形。
出示一张长方形的纸,让学生说出它的形状,然后把许多这样的纸摞在一起,问学生还是长方形吗?
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
让学生用手摸长方体的纸盒的面,使学生感觉它很平,再用两只手握一握长方体的纸盒。问:有什么感觉?为什么会有这种感觉呢?
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
二、引导探究
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)
问:实物中长方体的每一个面是什么形?作图时,根据作图的原理除了前面和后面之外,其他各个面都画成了什么形?但实际是什么形?
让学生上去指一指,图上哪3个面是我们能直接看到的?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)
(2)棱的特点
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)
(3)顶点的个数
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征
__让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
__小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征
(1)师:学习了长方体的特征,你们想不想自己来探究正方体的特征?你们准备从哪几个方面进行研究?想用哪些办法来研究?
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
三、巩固练习
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题
学生独立完成后交流。
四、总结
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
五、课外延伸
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2、会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3、引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4、借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程 :
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1、探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。c、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:v=sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题:
底面积(㎡) 高(m) 圆柱体积(m3)
6 3
0.5 8
5 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
s底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
v =s底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三、巩固反馈
1、 求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业 本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
教学目标:
1、使学生明确本学期的学习任务。
2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。
教学过程:
一、 课堂教学常规的说明:
1、上课的各项要求说明等。
2、练习的各项要求说明等。
3、其他说明。
二、 复习旧知:
(一) 填空:
1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。
2、1米的3/7是( )米,3米的1/7是( )米。
3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。
(二) 解决问题:
1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?
2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?
3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?
4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?
5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?
6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?
7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?
8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?
9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?
10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)
(三) 拓展练习:
1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?
2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?
(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?
3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?
4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?
5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?
6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教具学具:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(p4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看x疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是
3、讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七、布置作业
?家庭作业》第1页的练习。
会计实习心得体会最新模板相关文章: